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T
oday's computers are characterized by
two fundamental attributes: Boolean
logic and von Neumann architecture.1

Despite their tremendous successes, such
computers suffer several issues, such as the
physical scaling limits of the semiconductor
devices and the low efficiency as compared
to the biological systems.2,3 Recently, neuro-
morphic computing has attracted much
attention due to its massive parallelism,
adaptivity to the varying and complex input
information, and tolerance to fault and
error.4,5 These brain-inspired systems have
great potentials for computing with higher
efficiency.6,7 The synapse is a crucial element
in biological neural networks.8,9 Due to the
large number of the synapses in a neural

network, it is highly desirable to emulate
the synapse with a simple device structure
that has high density and low-energy con-
sumption.10�12

Among the possible candidates, metal-
oxide-based resistive switchingmemory de-
vices have great advantages for the imple-
mentation of synaptic devices due to their
high performance, low cost, and compat-
ibility with CMOS technology.6,13 Previous
literature has reported that this kind of
programmable device has good scalability
(less than 10 nm),14 fast switching speed
(about 300 ps),15 robust cycling endurance
(more than 1010 cycles),16 and low operation
voltage (less than 2V).14,15 Three-dimensional
(3D) resistive switching memory array was
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ABSTRACT Neuromorphic computing is an attractive computation paradigm

that complements the von Neumann architecture. The salient features of

neuromorphic computing are massive parallelism, adaptivity to the complex input

information, and tolerance to errors. As one of the most crucial components in a

neuromorphic system, the electronic synapse requires high device integration

density and low-energy consumption. Oxide-based resistive switching devices have

been shown to be a promising candidate to realize the functions of the synapse.

However, the intrinsic variation increases significantly with the reduced spike energy due to the reduced number of oxygen vacancies in the conductive

filament region. The large resistance variation may degrade the accuracy of neuromorphic computation. In this work, we develop an oxide-based electronic

synapse to suppress the degradation caused by the intrinsic resistance variation. The synapse utilizes a three-dimensional vertical structure including

several parallel oxide-based resistive switching devices on the same nanopillar. The fabricated three-dimensional electronic synapse exhibits the potential

for low fabrication cost, high integration density, and excellent performances, such as low training energy per spike, gradual resistance transition under

identical pulse training scheme, and good repeatability. A pattern recognition computation is simulated based on a well-known neuromorphic visual

system to quantify the feasibility of the three-dimensional vertical structured synapse for the application of neuromorphic computation systems. The

simulation results show significantly improved recognition accuracy from 65 to 90% after introducing the three-dimensional synapses.
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expected to achieve high density integration.17,18

Furthermore, oxide-based resistive switching devices
commonly exhibit multilevel storage ability,19�21

which could be used as modifiable weights in a neural
network.6 Recently, the spike-time-dependent plasti-
city and short- and long-term potentiation in resistive
switching devices were demonstrated at the device
level.11,22�24

However, oxide-based synaptic devices need to
further reduce the switching current because the
energy consumption is one of the key parameters
for the electronic synapse application.25 If the width
of the training pulses are around 1 ns, which is the
typical clock speed in CMOS circuits, the current of the
synaptic device should be substantially less than 10 μA
to have energy consumption comparable with the
biological one (around 1 to 10 fJ per event).6 Although
the switching current can be controlled by the proper
operation scheme,26 such as applying low compliance
current on the device, some negative effects will
emerge in this case, which cause the degradation of
device performance. One of themost serious problems
for resistive-switching-based synaptic devices oper-
ated at the low programming current regime is the
large resistance fluctuation.20,26,27 It is widely accepted
that the connection and rupture of conductive fila-
ments formed by oxygen vacancies is responsible for
the switching phenomenon in the oxide-based resis-
tive switching devices.28,29 The evolution of the fila-
ments is attributed to the migration of oxygen ions
under the electrical and thermal activation. The resis-
tance variation is derived from the randomdistribution
of oxygen vacancies, which is an intrinsic property
of the materials. If the device is controlled to work in
the low-current regime, the local amount of oxygen
vacancies in the filament region becomes less. The
reduced number of oxygen vacancies results in the
increased variation of the resistance.30 Although neural
networks have strong ability to tolerate errors,25 the
computation accuracy still decreases as the variation in
device resistance is increased.31 The large variation of
the synaptic device will seriously block the application
of the neuromorphic system.
In this work, we develop an oxide-based synapse

with 3D vertical structure. The negative effect from
the intrinsic resistance variation can be effectively
suppressed on this synapse. The 3D vertical synapse
exhibits the potential for low fabrication cost, high
integration density, and high efficiency. As an illustra-
tion of the use of electronic synapse in a practical
system, a pattern recognition application is simulated
based on the experimentally measured characteristics
of the fabricated devices.

RESULTS AND DISCUSSION

Figure 1a illustrates a typical artificial neural net-
work using a cross-point array of a resistive switching

synaptic device at the junction and a CMOS-based
neuron circuit at the periphery of the array. The pre-
neuron processes input information and then passes
it to the postneuron through synapses. The resistive
switching synaptic device changes its conductance
under the stimulation of electrical signals. A typical
neuron operation involves summation and integration
of input signals, with each scaled by the corresponding
synaptic weights, and firing occurs if the result exceeds
a threshold (Figure 1b).32 Since each preneuron should
be connected to each postneuron through a synapse,
the number of synaptic devices is very large. Thus, a
3D array structure with resistive switching device is
preferred for providing the high device integration
density. For a 3D array, simply stacking the planar array
does not save the cost per bit, so a vertical device
structure with only one crucial lithography step is a
more promising approach.17 Figure 1c shows the 3D
vertical resistive switching device array for synaptic
application. The resistive switching synaptic devices
are sandwiched between the vertical pillar electrodes
and multilayer plane electrodes. The plane electrodes
and pillar electrodes are connected to pre- and post-
neurons, respectively. In this case, the integration
density is m times larger than the two-dimensional
plane array (m is the number of layers).
As a proof-of-concept work, we fabricated a two-

layer resistive switching device array. Pt and TiN are
used as plane and pillar electrodes, respectively, while
the switching oxide is HfOx or HfOx/AlOy. Figure 1e
shows the transmission electron microscopy (TEM)
image of the top and bottom cell on the same pillar.
Figure 2a shows the typical dc I�V curve of resistive
switching process of the fabricated 3D vertical synaptic
devices. Both the top and bottom devices show ex-
cellent resistive switching behavior with resistance
ratio greater than 103 and switching voltages less
than 3.5 V. The SET (from high resistance state to low
resistance state) process is abrupt, while the RESET
(from low resistance state to high resistance state) is
gradual. Intermediate states, correlated with various
length of filament gap, can be controlled by changing
the RESET voltage. To reduce the switching current, we
apply compliance current on the device during the SET
process (Figure 2b). The size of filament can be effec-
tively suppressed by applying a small current compli-
ance, resulting in higher resistance and lower current.
For synaptic training, only slight resistance changes

are necessary with each spike. The intermediate states
can bemodulated by varying thewidth, the amplitude,
or the number of pulses.21 The last modulation meth-
odology is preferred since it significantly simplifies the
design of the programming pulse generation circuit.25

In this case, a series of identical pulses are applied on
the device sequentially. The resistance of the device
increases correspondingly as the pulse number in-
creases, as shown in Figure 2c,d. In Figure 2c, the initial
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Figure 1. (a) Traditional 2D cross-point array for electronic neural network application. Each top or bottom metal line is
connected with a neuron at its terminal. A synaptic device is located at the intersection of each top and bottom metal line.
Resistive switching device is one of the choices for the electronic synapse. (b) Implementation of a neuron circuit with resistive
switching devices as synapses. The neuron calculates the sumof inputweighted by the conductance of synapses and outputs a
pulse under some specific conditions. (c) Schematic of the 3D vertical electronic synaptic device architecture for high-density
application. Each horizontal or vertical metal line is connected with a neuron. Horizontal lines can be layered many times.
An oxide-based synaptic device with a vertical structure is formed at the intersection of each horizontal and vertical metal line.
(d) Schematic of the 3D vertical synapse for high-accuracy computation. The vertical metal pillar and all the oxide-based
resistive switching devices on this pillar form an electronic synapse. The mean value of these devices reduces the negative
effects causedby resistancevariationduring the synaptic trainingprocess. (e) TEM imageof the fabricated two-layer 3Dvertical
oxide-based resistive switching synaptic devices.

Figure 2. Resistive switching and synaptic training behavior measured on the 3D vertical synaptic array based on the single-
cell operation scheme. (a) Typical dc I�V curve of the bipolar resistive switching process measured on the fabricated
HfOx-based 3D vertical synaptic devices. The switching process of top and bottom devices on the same vertical pillar are
shown. (b) Resistive switching process with different current compliance. Multilevel switching process is observed. The
switching current or energy can be reduced by using small compliance current. (c) Gradual synaptic training process by
500 RESET consecutive identical pulses with different amplitudes. The pulsewidth is 50 ns. (d) Training process for one device
with different initial resistance states achieved by different current compliances during the previous SET cycles. If starting
at ∼1 MΩ, the maximum energy per spike drops below 1 pJ.

A
RTIC

LE



GAO ET AL. VOL. 8 ’ NO. 7 ’ 6998–7004 ’ 2014

www.acsnano.org

7001

resistance of the device is ∼10 kΩ. After 500 consecu-
tive training pulses (�2.1, �2.3, and �2.5 V per 50 ns)
are applied, the resistance gradually increases bymore
than 100 times and then saturates at a fixed value
which increases with the training voltage. The resistance
increases and reaches saturation more quickly for larger
pulse amplitudes. Smaller voltage leads to more inter-
mediate states, while larger voltage leads to lower total
energyconsumption in the trainingprocess. Thisphenom-
enon can be explained by the oxygen migration model:
oxygen ions migrate faster under larger electrical field,
which increases the speed of oxygen vacancy recombina-
tion. The observed voltage dependence of the switching
speed is similar to the biological synaptic learning. For
example, the stronger stimulus causesquicker study. Since
the energy consumption per spike is crucial for synaptic
device, to reduce the training energy, we set the initial
state of the device to ∼100 kΩ and 1 MΩ by controlling
the compliance current in the previous SET cycle.
Figure 2d shows the training process that starts from the
two initial states. For the initial resistance state of∼1 MΩ,
the maximum energy per spike drops to ∼0.29 pJ.

The reduced energy consumption is mainly attributed
to the higher initial resistance of the devices. The
measurement results demonstrate the feasibility of
the 3D resistive switching device array-based synapses
for a high-density, low-energy consumption neuro-
morphic computation system.
Another advantage for the 3D array is to achieve

high-accuracy computation. As mentioned above, the
resistance variation increases when the synaptic de-
vices are operated in the low-current regime. Normally,
we aim to tune the length of tunneling gap between
filament tip and electrode to get the gradual resistance
change during the training process. During the RESET
process, oxygen ions migrate from the cathode to the
filament tip, leading to the decreasing length of con-
ductive filament and increasing length of the filament
gap region. When the device works in the high-current
regime, the amount of oxygen vacancies formed in the
conductive filament region is large. For such a thicker
conductive filament, the migration of several oxygen
vacancies from the filament may not influence the
overall resistance of the device (Figure 3a). When the

Figure 3. (a) Schematic of the oxygen vacancy conductive filament correlated with high-current regime. (b) Schematic of the
oxygen vacancy conductive filament correlatedwith low-current regime. (c) Extracted resistance variation (based on the data
from Figure 2c,d) as a function of energy consumption. (d) Pattern inputted into the neuromorphic visual system for training.
(e) Simulated final resistance map of traditional oxide-based resistive switching synapses after training. In the simulation, all
the parameters are extractedbasedon the experimental data shown in Figure 2. Due to the resistance variationof thedevices,
the system could not be trained very well. (f) Simulated final resistancemap of the optimized oxide-based resistive switching
synapses using the proposed 3D architecture after training. Compared with panel e, significant improvement could be
observed. (g) Simulated accuracy of the systemwith traditional resistive switching synapses under different device variation.
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programming current is smaller, the amount of oxygen
vacancies becomes less and the conductive filament is
thinner. Some of the key conduction paths may only
consist of one or several oxygen vacancies. A small shift
of these oxygen vacancies may modify the length of
filament gap region or form an additional tunneling
gap, which results in an unintentional change of
resistance (Figure 3b). Since the migration of oxygen
ions due to thermal diffusion and electrical drift is a
random process, the resistance variation in the low-
current regime is inevitable for resistive switching
synaptic devices. To demonstrate this conclusion,
we extracted the resistance deviation from the ideal
curve, which is fitted based on the measured data in
Figure 2c,d. In Figure 3c, it is seen that if the initial
resistance is ∼10 kΩ, the deviation for the whole
training process is less than 5%, while if the initial
resistance is∼1 MΩ, the deviation is greater than 15%.
It is evident that the pulse-to-pulse variation increases
as the initial resistance increases.
To study the influence of resistance variation on the

accuracy of the neuromorphic system, a more realistic
neuromorphic visual system is built, whose task is to
classify the different kinds and orientations of images.
The simulated neural network consists of two layers.
The first layer contains 32 � 32 input neurons which
sense the brightness of a pixel in the source image and
convert it into an electrical signal. The second layer
contains 16 cortex neurons. All the cortex neurons
connect to each input neuron through a 32 � 32 �
16 resistive switching synapses array. In the simulation,
hundreds of different images are input for recognition.
These images are classified into several categories.
Every category is assigned with a specific orientation,
and images in it with a different orientation are re-
garded as recognition failure. Figure 3g shows the
recognition accuracy as a function of resistance varia-
tion. It can be found that when the initial resistance
is 10 kΩ, which corresponds to the variation of 4%,
the recognition accuracy is 92.5%. The accuracy drops
to 55% when initial resistance is 1 MΩ, which corre-
sponds to the variation of 15%. These results illustrate
an important trade-off between the energy consump-
tion and computation accuracy.
One way to solve the fluctuation problem is to use a

group of resistive switching devices to mimic a single
synapse. The mean value of the devices can effectively
suppress the variation. The 3D synaptic array provides
a convenient structure to connect in parallel multiple
devices at the intersection of each lines connected to
the pre- and postneurons. As illustrated in Figure 1d,
the resistive switching devices on different layers with
the same pillar can be viewed as a synaptic device.
These devices receive the same training pulses at the
same time. Figure 4a shows the measured training
process based on such an operation scheme. Two
devices on the same pillar are trained and read at the

same time. The gradual resistance changes observed
on both of the devices indicate that there is no inter-
ference during the training or readout process.
To evaluate the degree of accuracy improvement of

such methodology, we simulate the pattern recogni-
tion process based on the performance of the 3D array.
It is found the resistance variations extracted from
the top device and bottom device are 9.8 and 7.5%,
which results in a∼65 and∼70% recognition accuracy
if using a single device as synapse (Figure 3e). After
combining the two devices as a synapse, the variation
of the mean value is ∼5.9%, which corresponds to a
recognition accuracy of 90%. Significant improvement
on resistance uniformity of devices and recognition
accuracy of the system is achieved by using the 3D
synapses. Adding more resistive switching devices
on one synapse is expected to get a better accuracy.
Figure 4b shows the simulation results of the recogni-
tion accuracy as a function of device number and
resistance variation. A signification improvement is
observed when using more devices in parallel as a
synapse. This methodology can be achieved by adding
more layers on the 3D array. Based on the structure

Figure 4. (a) Training process for the synapse consisted of
two resistive switching devices. Inset: schematic of mea-
surement setup. The two devices sharing a same vertical
metal pillar are trained at the same time. In the training
process, voltage pulse is applied on the pillar electrode,
while the two plane electrodes are grounded. (b) Simulated
pattern recognition accuracy as a function of resistance
variation. The synapses consisting of different number of
oxide-based resistive switching devices are shown.
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shown in Figure 1d, the number of the resistive switch-
ing devices for one synapse is dependent on the layers
of plane electrode, adding which moderately increases
the fabrication cost. The density of the synapses imple-
mented in this structure is still 4F2 (F is the feature size of
the fabrication technology), which is similar to the 2D
cross-point architecture.28 It should be noticed that with
more devices stacked in parallel, the recognition accuracy
is improved significantly, while the energy consumption
increases linearly with the stacked device number. There-
fore, to keep the same recognition accuracy, the 3D
synapsewith low current can achievemuch lower energy
consumption than single device with high current.

CONCLUSION

To summarize, we experimentally demonstrated 3D
vertical resistive switching electronic synaptic devices.

Low training current (<3 μA), gradual resistance
transition with hundreds of intermediate states, fast
speed (50 ns), low training voltage (<2.5 V), and
robust device-to-device repeatability are measured.
A training operation scheme on the 3D synapses is
proposed by combining several devices on the
same vertical pillar as a single synapse. The negative
effects caused by resistance variation, which is intrinsic
to the resistive switching synaptic devices, can be
effectively suppressed based on the novel scheme.
A pattern recognition computation is simulated
based on the established neuromorphic visual
system to quantify the variation effects. The simulation
result shows significant improvement of recogni-
tion accuracy after using the novel training scheme
on the proposed 3D neuromorphic computation
system.

METHODS

Device Fabrication. We develop an oxide-based synapse with
3D vertical structure. The schematic of the process flow is shown
in Supporting Information S1: First, multilayer stacked Pt
(22 nm) and SiO2 (33 nm) are deposited by e-beam evaporation
and plasma-enhanced chemical vapor deposition, respectively.
Next, a trench (1�100 μm in size) is dry etched down to the
bottom SiO2 layer to form the active memory region. Then HfOx

layer of 5 nm or AlOy/HfOx layers of 3 nm/3 nm are deposited by
atomic layer deposition successively, which conformally covers
the sidewall of the trench. Then, 150 nm TiN is deposited by
reactive sputtering to fill the trench as the pillar electrode. Finally,
contact vias to the Pt plane electrode are formed by dry etching
so it canbe separately contacted electrically. The synaptic devices
are formed at the sidewall between the TiN pillar electrode and Pt
plane electrode with two cells on the sidewall per trench.

Electrical Measurements. Direct current measurements are
performed using the Agilent B1500A semiconductor device
parameter analyzer combined with a probe station (Cascade).
In the measurement, voltage is applied on the plane electrode
(Pt), while the pillar electrode (TiN) is grounded. Current
compliance is applied to protect the device and to control
the filament size. Pulse measurements are performed using a
combination of Agilent B1500A semiconductor device para-
meter analyzer, Agilent 33250 function/arbitrary waveform
generator, and a switching matrix. Resistance is read using dc
method after each pulse is applied.

For the single-cell operation, a half voltage program scheme
is adopted to avoid unintentionally writing on the unselected cell.
SET or RESET voltage is applied on the selected plane electrode,
while another voltage, which equals the half value of the SET or
RESET voltage, is applied on the unselected plane electrode.
Therefore, only the selected cells will see a full write voltage,
while unselected cells will see a half write voltage. For the array
read operation, the unselected plane electrode is grounded to
avoid the misreading caused by the sneak path effect.

For the synaptic operation, SET or RESET is performed at
the same time on the devices sharing the same pillar electrode.
In this case, SET or RESET voltage is applied on the vertical
pillar electrode, and the plane electrodes are grounded. In the
SET process, current compliance is applied on all the plane
electrodes, while the pillar electrode does not receive current
compliance.
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